R1: Nano- and Microstructural Tissue Characterization for Improved Care of Children with Osteogenesis Imperfecta and Severe Clubfoot Deformity (Focus Topic)

#### O Co-Pl's

- Gerald Harris, Ph.D., P.E.
- Jeffrey Toth, Ph.D.



Nano-

indentation (R1)

Gait analysis (R4)

SIMM (R

- Patient populations
  - Osteogenesis Imperfecta (OI): 45
  - Clubfoot (CF): 12

Tech 2 POD TECHNOLOGIES FOR PEDIATRIC ORTHOPAEDIC DISABILITIES Marquette University Rehabilitation Research Center

#### What Is Osteogenesis Imperfecta (OI)?

- OI is a genetic disorder with increased bone fragility and low bone mass.
- Typical extraskeletal manifestations can be associated to a variable degree
  - Blue sclera
  - Dentinogenesis Imperfecta
  - Hyperlaxity of ligaments and skin
  - Hearing impairment
  - Wormian bones

#### **Osteogenesis Imperfecta**



## The hierarchical structure of bone



## Nanoindentation

- Microstructural level mechanical properties measurement without structural influence
- Static measurements: Young's modulus (E) and hardness (H)
- Dynamic Measurements







### Results

For cortical and trabecular bone, modulus and hardness do not show any significant difference between OI type III and type IV.

The ratio of E/H shows <u>marginally significant decrease for</u> <u>type III cortical bone</u> and a <u>significant decrease for</u> <u>trabecular bone</u>.

| Measurement                     | Values (GPa) |              |         |  |  |  |
|---------------------------------|--------------|--------------|---------|--|--|--|
|                                 | Type III     | Type IV      | P value |  |  |  |
| Young's Modulus<br>(Cortical)   | 19.67 (2.76) | 19.19 (2.4)  | 0.61    |  |  |  |
| Hardness<br>(Cortical)          | 0.70 (0.17)  | 0.66 (0.13)  | 0.43    |  |  |  |
| Young's Modulus<br>(Trabecular) | 19.23 (2.01) | 18.27 (2.76) | 0.29    |  |  |  |
| Hardness<br>(Trabecular)        | 0.65 (0.12)  | 0.62 (0.14)  | 0.35    |  |  |  |
| Ratio of E/H<br>(Cortical)      | 28.60 (4.38) | 30.64 (4.44) | 0.069   |  |  |  |
| Ratio of E/H<br>(Trabecular)    | 28.62 (2.23) | 31.27 (3.99) | 0.002*  |  |  |  |

Nanoindentation Studies of OI Bone Summary – Current Knowledge

#### Young's modulus, E: 11-24 Gpa

- cortical ≈ trabecular<sup>1</sup>
- Iongitudinal ≈ transverse<sup>1</sup>
- $||| \approx |V^2|$
- Iong bones ≈ iliac<sup>2</sup>
- OI > control (13%)<sup>3</sup>
- pamidronate: no significant effect on modulus<sup>3</sup>

1. Fan et al. 2006; 2. Fan et al. 2007; 3. Weber et al. 2006





1. Kinematics. The mean value of the type I OI group is plotted as a light blue band plus and minus one standard deviation.

75%

75%

75%

- 2. The control group is plotted in dark gray.
- 3. The x-axis represents the percent gait cycle.
- 4. Toe off occurs at 63.4% GC for the OI subjects and 60.6% GC for the control group.
- 5. The "\*" indicates a peak significant difference between the groups.



- Kinetics. The mean value of the type I OI group is plotted as a light blue band plus and minus one standard deviation.
- 2. The control group is plotted in dark gray.
- 3. The x-axis represents the percent gait cycle.
- 4. Toe off occurs at 63.4% GC for the OI Subjects and 60.6% GC for the control group.
- 5. The "\*" indicates a peak of significant difference between the groups.

# **Model Development**

#### Tetrahedral elements

- Triangular shell elements for moments
- Material properties from nanoindentation literature
  - Young's modulus: 19 GPa
  - Poisson's ratio: 0.30
- Nodal manipulation to match femur geometry from x-ray
  - Shortened from 48.4 cm to 40 cm
  - Mild outward coronal bowing



Meshed models of normal femur (left) & OI type I femur (right) in Abaqus.

X-ray of OI type I femur

### Results: Qualitative

- Contour plots on model show location of femur at highest risk
- Location of risk <u>migrates with gait phase</u> & <u>muscle loading</u>





Stress distribution for initial swing

#### **RERC Directions in Fx Risk Assessment**

- Mechanical Testing ... Strength
- µCT, Nano, µFE ... Effective Trabecular Modulus
- Synchrotron Radiation Micro CT, SR- µCT
- Better Musculoskeletal Models (UE & LE)
- Better Patient Specific FE Models (UE & LE)
- Better Statistical Models ... Clinical Outcomes
- Effects of Transition and Aging







## RERC Directions in Clubfoot Tissue Assessment

- Mechanical Testing ... Tissue Bath / Longer Term Behavior
- Sample Collection (3 samples / 2 patients)
- Acoustic Evaluation (SAM)
- Histological Evaluuation
- Modeling Approaches (uni- and bi-axial tests)
- Clinical Application/Evaluation



# R1 Time Line

| Activity:                                                  | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 |
|------------------------------------------------------------|--------|--------|--------|--------|--------|
| Harvesting of OI bone specimens                            |        |        |        |        |        |
| μCT of OI bone specimens                                   |        |        |        |        |        |
| Nanoindentation of OI bone specimens                       |        |        |        |        |        |
| Micro-mechanical testing of OI bone specimens              |        |        |        |        |        |
| OI FEM development: generic, patient-specific              |        |        |        |        |        |
| Harvesting of clubfoot MFMT specimens                      |        |        |        |        |        |
| $\mu$ CT imaging and analysis of MFMT specimens            |        |        |        |        |        |
| Mechanical characterization of clubfoot MFMT:              |        |        |        |        |        |
| testing, QLV+P modeling                                    |        |        |        |        |        |
| Clubfoot QLV+P FEM: development, simulations, verification |        |        |        |        |        |



TECHNICKOGIES FOR PEDIATRIC DRTHOPAEDIC DINABLITIES Marquette University Feliabilitation Engineering Research Center

# THANK YOU.







Rehabilitation Institute of Chicago

Shriners Hospitals for Children\*